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ABSTRACT
Data parallelism is a common way to parallelize stochastic gradient descent (SGD). However, the loss of
convergence at large minibatch sizes limits the scalability of data parallelism. This paper introduces a novel
method to combine gradients called Adasum that significantly improves the convergence when using large
minibatches. This paper provides the intuition and formal justification of Adasum along with a convergence proof.
Additionally, the paper describes an efficient implementation of Adasum and its integration into the open-source
toolkit Horovod for use in both TensorFlow and PyTorch.

The paper empirically shows that Adasum improves convergence when using large minibatch sizes for multiple
optimizers (Momentum-SGD, Adam, and LAMB). For BERT-Large training with a minibatch size of 64K, using
both Adasum and LAMB training converges in 20% fewer epochs than with LAMB alone. This combination
also allows BERT-Large training to scale to a 128K minibatch size. While one of the motivations for LAMB was
the inability of the Adam optimizer to scale beyond a minibatch size of 16K, we show that Adasum helps Adam
scale BERT-Large training to a 64K minibatch size. Our implementation of Adasum in Horovod has already been
adopted in several production environments.

1 INTRODUCTION

Recent trends in deep learning demonstrate that increasing
model size, coupled with an increase in training data, results
in improved model performance. This has led to progres-
sively larger models, such as BERT (Devlin et al., 2019),
GPT-2 (Radford et al., 2019), Megatron (Shoeybi et al.,
2019), UniLM (Dong et al., 2019), and GPT-3 (Brown et al.,
2020). This trend along with the end of Moore’s law means
that these large models have to be trained on distributed
clusters of machines. This in turn means that stochastic
gradient descent (SGD) — the dominant training algorithm
— must run in parallel.

Data parallelism is a common approach to parallelize SGD.
In data parallelism, a minibatch of data is distributed evenly
among compute nodes and each node computes a gradi-
ent on its part before aggregating the gradients in a bulk
synchronous parallel (BSP) fashion.1 Finding the best mini-
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1There are asynchronous SGD algorithms such as Hog-
wild! (Recht et al., 2011) and parameter server (Dean et al., 2012)

batch size involves a tradeoff between system efficiency
(number of dataset samples processed per second) and con-
vergence (number of dataset samples needed to achieve
the desired model accuracy) of SGD. A small minibatch
size achieves better convergence by frequently updating the
model, but suffers from smaller amount of parallelism. Con-
versely, a large minibatch size provides more parallelism but
converges slower (Keskar et al., 2016; Hoffer et al., 2017;
Goyal et al., 2017).

The main contribution of this paper is Adasum, an adaptive
summation technique that improves the convergence when
using a large minibatch size, thus enabling higher degrees of
parallelism and better system efficiency. Adasum does this
by being sensitive to the orthogonality of gradients when
deciding how to combine them. It averages gradients when
they are parallel, adds them when they are orthogonal and
smoothly interpolates in between.

The intuition behind Adasum is that it approximates a large
minibatch size update with multiple smaller minibatch size
updates. This paper shows that Adasum significantly im-
proves convergence of SGD with large minibatch sizes
over gradient averaging. This remains true even when us-
ing various learning-rate optimizers, such as Momentum-
SGD (Rumelhart et al., 1986), Adam (Kingma & Ba, 2015),
and LAMB (You et al., 2019). When combined with LAMB,
which is the state of the art optimizer for BERT-Large, Ada-

but this paper only focuses on synchronous SGD.
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sum converges in 20% fewer epochs than with LAMB alone
when using a minibatch size of 64K, the largest minibatch
size used in prior work (You et al., 2019). Additionally,
we show that LAMB with Adasum converges with 128K
minibatch size as well.

One of the motivations for LAMB was the inability to scale
BERT-Large with the Adam optimizer to minibatch sizes
larger than 16K (You et al., 2019). We show that Adasum
together with Adam converges with a 64K minibatch size in
this case. This is important as the Adam optimizer remains
popular among users despite improvements such as LAMB.

A key benefit of Adasum is that it requires limited to no ad-
ditional hyperparameter tuning to scale. When the learning
rate has been properly tuned for a small minibatch size, Ada-
sum dynamically adjusts the step size for a larger minibatch
size based on the orthogonality of the gradients. In contrast,
traditional gradient averaging method requires the learning
rate to be increased to properly benefit from the increased
parallelism while maintaining a similar convergence. Scal-
ing learning rate up linearly with (Goyal et al., 2017) or by
square root of (Hoffer et al., 2017; Krizhevsky, 2014) the
minibatch size works sometimes, but in general searching
for a hyperparameter is required to avoid divergence (Goyal
et al., 2017). This is in practice a significant benefit, as the
hyperparameter tuning of large models can be prohibitively
expensive. Adasum has already been adopted in production
environments for the training of state-of-the-art language
models as well as in Microsoft Azure AutoML, where it
serves customers who do not have the expertise or want to
conduct hyperparameter tuning.

A high-performance implementation of Adasum is publicly
available for both PyTorch and TensorFlow in the popu-
lar open-source distributed training framework Horovod2.
Users can enable the Adasum feature by passing an extra
argument to Horovod. Unlike the allreduce operation, Ada-
sum is not an elementwise operation on the gradients — it
requires two passes over the gradient, first to compute the
dot product and norm of the gradients and then to use these
scalars to do a weighted sum of the gradients. This paper
describes a vector-halving distance-doubling algorithm for
an efficient implementation. Further, the paper describes
a mechanism to parallelize the Adasum computation and
optimizer weight update that does not require code changes
to and is thus agnostic to the underlying optimizer.

In summary, the contributions of this paper are:

• Adasum, a new way to combine gradients that im-
proves the convergence of SGD with unprecedented
minibatch sizes.

• A proof of convergence for SGD with Adasum.

2https://github.com/horovod/horovod

• An optimizer agnostic parallelization strategy that sig-
nificantly speeds up the Adasum computation and opti-
mizer weight-update.

• A detailed discussion of how Adasum is implemented
in Horovod, a popular distributed training framework
for PyTorch and TensorFlow.

• An evaluation showing Adasum (1) scales minibatch
sizes for existing optimizers well beyond what was
possible in prior work, (2) converges faster even at
minibatch sizes used in prior work, and (3) maintains
these convergence benefits even under extensive hyper-
parameter tuning.

2 BACKGROUND

2.1 Stochastic Gradient Descent

Machine learning involves learning a model parameterized
by a set of weights w based on some training data. Given
a set of training examples {(x1, y1), . . . , (xk, yk)} where
each xi is a vector representing the input instance i and yi
is its output, training involves finding a w that minimizes
the loss function L =

∑
i Loss(w, xi, yi), the sum of indi-

vidual loss function for the model w on input (xi, yi). Loss
function returns a non-negative scalar value determining
how close are yi and the prediction of the model w with in-
put xi. For simplicity, we denote Loss(w, xi, yi) by Li(w).

Stochastic gradient descent (SGD) is the most commonly-
used technique in training a machine learning model. SGD
starts from an randomly initialized model w0 and progres-
sively updates the model at step i as wi+1 = wi−αigi(wi).
Here αi is the learning rate at this step as determined
by a learning rate schedule, and gi(wi) is the gradient of
the loss function at wi computed on a minibatch. That
is, gi(wi) = 1

b

∑b
j=1∇Lrj (wi) is the sum of the gradi-

ents of individual loss functions for a randomly chosen
{(xr1 , yr1), . . . , (xrb , yrb)} minibatch of size b.

2.2 Tradeoffs with Minibatch Size

In data parallelism, computing the gradient gi(wi) for a
minibatch is distributed among multiple compute nodes. We
now discuss the tradeoffs involved in setting the minibatch
size.

Suppose that there are P compute nodes. Each compute
node takes b/P portion of the minibatch of size b. We call
each portion a microbatch whose gradients are all added
locally and then accumulated across all nodes. We model
the total training time, in seconds, as:

train = steps(b) ·
(
comp(

b

P
) + comm(P )

)
Here steps(b) gives the number of iterations required to

https://github.com/horovod/horovod
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reach desired accuracy with minibatch size b. Addition-
ally, comp( bP ) and comm(P ) give the time to compute the
gradient for a microbatch of size b

P and the time to per-
form allreduce between P compute nodes, respectively. The
steps function is model specific, while comp and comm
additionally depend on the hardware.

Convergence is defined by b · steps(b) which is the to-
tal number of examples processed during training. It is
known that convergence is faster with smaller minibatch
size (Keskar et al., 2016). System efficiency is defined as

b
comp( b

P )+comm(P )
, which is the number of examples pro-

cessed in a second. If P is kept constant and b is scaled
up, the system efficiency is improved but the convergence
is negatively affected. Alternatively, if b is kept constant
and P is scaled up, the convergence remains constant but
the system efficiency up to a certain point is improved until
comm(P ) dominates the benefit of comp( bP ). Therefore,
there is a delicate balance on how b should be set for a given
P so that the total training time, train , is minimized. (Yin
et al., 2018) introduces a new measurement called gradient
diversity which indicates how much b can be scaled without
affecting convergence. We introduce a similar measurement
to study amount of parallelism dynamically during training
in Section 5.1.3.

In SGD there are steep diminishing returns to how much
steps decreases as b is increased. This loss in convergence
is what ultimately limits the scalability of synchronous SGD
and is what Adasum addresses.

3 ADASUM ALGORITHM

The main contribution of this paper is adaptive summation
(or Adasum for short) operator that combines gradients.
For a b minibatch size, P compute nodes and a b

P micro-
batch per compute node, Adasum combines the gradients
of the microbatches such that it approximates an SGD with
a minibatch size of b

p . That means using Adasum provides
the system efficiency of a b minibatch size SGD while it
approximates convergence of a b

P minibatch size SGD.

3.1 Approximating Large Minibatch SGD with Small
Minibatch SGD

Consider a scenario with two steps of SGD running on a
single compute node with minibatches b1 and b2 for the
first and second steps, respectively. Starting from w0, SGD
computes:

w1 = w0 − α · g1(w0)

w2 = w1 − α · g2(w1)

⇒ w1,2 = w0 − α ·
(
g1(w0) + g2(w1)

) (1)

where the last equation is just the combination of first two.
We assumed the same α for both steps for convenience. Now

consider a different scenario with one step of SGD with a
minibatch of b1 ∪ b2 running on two compute nodes where
b1 and b2 are distributed between them. SGD computes:

w1 = w0 − α ·
(
g1(w0) + g2(w0)

)
2

(2)

where g1(w0) and g2(w0) are the gradients from w0 for b1
and b2, respectively. Comparing Equations 1 and 2 shows
why scaling up the learning rate is popular with larger mini-
batch sizes (Goyal et al., 2017). For example, by doubling
the learning rate in Equation 2, the only difference between
the updated models in these two scenarios is g2(w1) and
g2(w0). The rest of this section describes how Adasum
approximates g2(w1), with readily available g2(w0) and
g1(w0).

As previously observed (Zheng et al., 2016; Maleki et al.,
2018), one can use second order reasoning to approximate
g2(w1) as follows:

g2(w1) = g2(w0 − α · g1(w0))

= g2(w0)− α ·
∂g2
∂w

∣∣∣
w0

· g1(w0) +O(α2 ‖g1(w0)‖2)

≈ g2(w0)− α ·H2 · g1(w0)

(3)

where H2 is the Hessian matrix of the loss function at w0

for b2 and H2 · g1(w0) is a matrix-vector product. The
approximation comes from neglecting the higher order terms
as α and ‖g1(w0)‖ tends to decay as the training progresses.
Refer to Appendix A.1 for a detailed discussion.

Using a standard theorem (Hastie et al., 2001; Reid, 2012)
for estimating the Hessian matrix for negative log-likelihood
loss (details in Appendix A.1), H2 can be estimated by
g2(w0) · gT2 (w0), the outer product of g2(w0) by itself, and
therefore,

g2(w1) ≈ g2(w0)− α · g2(w0) · g2(w0)
T · g1(w0) (4)

Let’s assume that α was chosen optimally in Equation 1
which means that α ∼ 1

‖g1(w0)‖2
, 1
‖g2(w0)‖2

(refer to Ap-
pendix A.2 for details). We also assume that ‖g1(w0)‖ ≈
‖g2(w0)‖. Combining all approximations produces:

g2(w1) ≈ g2(w0)−
g2(w0) ·

(
g2(w0)

T · g1(w0)
)

‖g2(w0)‖2

=
(
1− g2(w0)

T · g1(w0)

‖g2(w)‖2
)
g2(w0)

(5)

For the rest of this paper, we drop w0 from g1(w0) and
g2(w0) when the model is known from the context. Using
Approximation 5 in Equation 1, w1,2 is approximated by:

w1,2 ≈ w0 − α ·
[
g1 +

(
1− gT2 · g1

‖g2‖2
)
· g2
]

(6)
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3.2 Sampling Multiple Paths

The approximation above provides an intriguing possibility.
SGD is a stochastic process that samples a path defined by
the order of the training data it processes. For instance, if
SGD had processed minibatch b2 before b1, the final model
could be approximated as

w2,1 ≈ w0 − α ·
[
g2 +

(
1− gT2 · g1

‖g1‖2
)
· g1
]

(7)

By combining Equation 6 and Equation 7 one can sample
both paths 1, 2 and 2, 1 by averaging w1,2 and w2,1. This
ability to sample multiple paths motivates the definition of
the Adasum operation.

3.3 Adasum operation

We define the Adasum operation as

AS(g1, g2) ,
(
1− gT2 · g1

2 · ‖g1‖2
)
· g1 +

(
1− gT2 · g1

2 · ‖g2‖2
)
· g2

(8)
From Equation 6, Equation 7, and Equation 8 we can see
that we can average w1,2 and w2,1 by using the gradients
combined with Adasum to update the model:

w1,2 + w2,1

2
= w0 − α · AS(g1, g2)

Before extending Adasum to more than two gradients below,
we study two properties of the Adasum operation above.
When g1 and g2 are orthogonal, their dot product gT2 · g1
is zero. Therefore, Adasum simply adds the two gradients.
When g1 and g2 are parallel, their dot product is the product
of their norms and Adasum becomes the average of the two
gradients. Intuitively, when the two gradients are pointing
in orthogonal directions, Adasum behaves as if their loss
functions are locally independent and aggressively sums the
two gradients. Doing so when the two gradients are parallel
has the danger of "overshooting" the minimum, particu-
larly when the learning rate is also aggressive and therefore,
Adasum safely averages the gradients. This adaptiveness
becomes important as we later show that gradients tend to
point in the same direction during the initial parts of the
training. This is because the initial model is completely
random and all gradients agree on the general direction
model should progress. However, the gradients become
progressively orthogonal in later parts of the training. Ada-
sum automatically and adaptively interpolates between an
aggressive sum and a safe average as training proceeds.

3.4 Combining More Than Two Gradients

We can extend Adasum to more than two gradients by re-
cursively applying the operator. Let g[i,j) be the gradients

corresponding to minibatches bi . . . bj−1 (note that in [i, j),
i is included and j is excluded). Adasum operator combines
g[0,n) in two ways and in both cases, similar to sequential
SGD, the order in which samples and gradients are picked
affects the output. The first way that Adasum operator com-
bines gradients is as follows:

AS(g[0,n)) = AS(AS(g[0,n−1)), gn)

As explained above, as each application of the Adasum
operation doubles the number of SGD paths samples, we
achieve the effect of sampling exponentially many SGD
paths.

One can reuse the standard ring algorithm for allreduce to
implement the Adasum operation. One complexity is that
Adasum operator is not a point-wise computation due to
the inner product and norm computations. Therefore, it
cannot be performed in a pipelining manner as it requires
two passes of the data. In the second way, we implement a
more efficient algorithm that uses the following recursive
application:

AS(g[0,n)) = AS
(
AS(g[0,n/2)),AS(g[n/2,n))

)
(9)

The resulting ADASUMRVHDD algorithm is shown in Al-
gorithm 1. ADASUMRVHDD uses a modified recursive
vector-halving distance-doubling (RVHDD) algorithm for
allreduce (Vandegeijn, 1994; Chan et al., 2007), which is
both latency and bandwidth optimal in a switch based net-
works.

ADASUMRVHDD in Algorithm 1 is called in a single pro-
gram multiple data (SPMD) fashion where size number
of compute nodes call the same function with rank ∈
{0, . . . , size − 1} used as their identification. The func-
tion is called with x set to each compute node’s gradient and
d = 1. ADASUMRVHDD algorithm performs the Adasum
operation in two phases, a reduce-scatter phase (lines 1-1)
followed by an allgather phase (lines 1-1).

Algorithm 1 starts with ranks exchanging half of their vector
x with a neighbor at distance d = 1 (lines 1-1). Here the
two halves a and b are assigned such the left neighbor’s half
is in a and the right neighbor’s half is in b.

Lines 1-1 of Algorithm 1 represent the main modification
to baseline RVH algorithm. First, on line 1, each rank
calculates a dot product and squared norms for a and b,
which are slices of a larger logical vector shared across
exactly the ranks in group (line 1) which in the first iteration
is of size 2. Line 1 then sums the products among the ranks
in group to produce the complete results in v. The reduction
is finally applied locally using the values in v (line 1). Now
each group logically has the result of an Adasum operator
scattered among the members.
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Algorithm 1 Recursive vector-halving distance-doubling
with Adasum
Require: size > 2 is a power-of-two.

1: function ADASUMRVHDD(x, d)
2: mid = b|x|/2c
3: if brank/dc is even then
4: nghr = rank + d {Left neighbor}
5: SEND(xmid:|x|,nghr) {Send right half}
6: a = x0:mid

7: b = RECV(nghr) {Receive left half}
8: else
9: nghr = rank − d {Right neighbor}

10: SEND(x0:mid ,nghr) {Send left half}
11: a = RECV(nghr) {Receive right half}
12: b = xmid:|x|
13: end if
14: d ′ = 2 · d
15: v = [a · b, a · a, b · b] {Partial dot products}
16: group = [b rankd′ c · d ′ + i for i = 0 . . d ′ − 1]
17: v = ALLREDUCE(v,+, group) {Finish dot prod-

ucts}
18: x′ = a · (1− v1

2v2
) + b · (1− v1

2v3
) {Apply Adasum }

19: if d ′ < size then
20: x′ = ADASUMRVHDD(x′, d ′)
21: end if
22: SEND(x′,nghr) {Send my half}
23: y = RECV(nghr) {Receive neighbor’s half}
24: x = x′ ++ y if brank/dc is even else y ++ x′

25: end function

The function is then recursively is called by doubling the
distance on line 1. Now every 2 consecutive groups work
together to reduce another pair of vectors using Adasum
operator. This continues until one logical vector is scattered
among the group of all compute nodes.

The second phase of the algorithm recursively exchanges
slices of the final vector so that each compute node has a
copy of full vector on lines 1-1.

3.5 Layer-Wise Adasum

In practice, ML models have multiple layers. We apply
Adasum per layer, as opposed to the whole gradient. This
ensures Adasum adaptively interpolates between an average
and sum, based on per-layer orthogonality. Section 5.1.3
empirically validates this decision on both ResNet-50 and
BERT-Large.

3.6 Convergence Proof

In this Section, we provide the skeleton of Adasum con-
vergence proof and we defer most of the details to Ap-
pendix. SGD uses a minibatch of size b which is usu-

ally much smaller than n, the total number of training
examples, to estimate the true gradient, the gradient of
all training examples. Let’s denote the true gradient with
G(w) = 1

n

∑n
i=1∇Li(w) and the gradient of a randomly

sample minibatch of size b with gb(w) = 1
b

∑b
i=1∇Lri(w).

Because of the uniformly randomly selected minibatch, in
expectation, they are equal: E(gb(w)) = G(w). (Polyak
& Tsypkin, 1973) argues that any SGD-like algorithm
requires the update rule to follow the pseudogradient
property. The details of Theorem is discussed in Ap-
pendix A.3. However, the most important properties that
Adasum needs to satisfy to qualify to be a pseudogradient
are: (1) G(w)T · E(AS(gb1(w), gb2(w))) > 0 for indepen-
dently randomly chosen b1 and b2 and non-optimal ws, and
(2) ‖E(AS(gb1(w), gb2(w)))‖ ≤ c ‖G(w)‖ for some con-
stant c.

We prove the first required property using Lemma A.2 in
Appendix A.3. Lemma A.2 claims That the angle between
E(AS(gb1(w), gb2(w))) and G(w) is smaller than 0.108π.
Any two vectors with an angle smaller than π

2 have a positive
inner product which satisfies the first requirement. Adasum
operator is applied on logP steps on P gradients as shown
in Algorithm 1 where P is the number of compute nodes.
In Appendix A.3, we argue that under safe assumptions
the first property of positive inner product is still true for
arbitrary number of Adasum operators.

We prove the second required property using
Lemma A.3 in Appendix A.3. Lemma A.3 claims
that E(‖AS(gb1(w), gb2(w))‖) ≤ 2 ‖G(w)‖. Since
Adasum operator is applied in logP levels, expected
value of the norm of the final vector must be smaller that
2logP ‖G(w)‖ = P ‖G(w)‖ which satisfies the second
property of pseudogradient.

4 HOROVOD INTEGRATION

Adasum is implemented in Horovod (hor) and is publicly
available in the main branch of its open-source repository.
Horovod integrates with multiple machine learning frame-
works, such as TensorFlow and PyTorch, and targets multi-
ple backend transports, including Ethernet/IB and NVLink.

Adasum can be enabled by specifying an option to the
DistributedOptimizer API of Horovod as follows.

opt = hvd.DistributedOptimizer(opt, op=hvd.Adasum)

For more fine grained control, we also expose the Adasum
operator through Horovod’s allreduce as follows.

hvd.allreduce(opt, op=hvd.Adasum)

This is useful when users want to perform additional opera-
tions such as gradient clipping beyond those implemented
in a DistributedOptimizer.
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One subtlety is that the Adasum operation should be
performed on the model update after the optimizer has
been applied. Intuitively, this is because Adasum em-
ulates the behavior of smaller minibatch sizes and the
logic of optimizers should apply to these smaller mini-
batches before the allreduce. See Appendix A.6 for
more details. This is handled transparently through the
DistributedOptimizer API, but must be manually
implemented when using hvd.allreduce.

Parallelizing Adasum Computation For large models
such as BERT-Large, memory available in a GPU only fits
a small microbatch size. In such cases, to increase the
effective microbatch size, we use the GPUs available in
a single node to accumulate local gradients and use the
Adasum operation across nodes. This scenario also allows
the following parallelization of the Adasum computation
across the local GPUs.

Our approach is inspired by the optimizer-state partitioning
algorithm pioneered by Marian (mar) where the insight is
that optimizer parameters are identical for all GPUs and thus
it is not necessary to replicate them. We use this same in-
sight to parallelize the Adasum computation as follows. For
each layer its gradient is reduced inside a node onto a single
GPU, on which the optimizer is applied. ADASUMRVHDD
is then applied across GPUs holding the same layer on differ-
ent nodes. The model update is finally broadcast to all other
GPUs inside the same node. A key difference between the
Marian approach and ours is that rather than distributing this
state uniformly, our partitioning never splits layers, which
greatly simplifies the implementation and works without
requiring changes to the underlying optimizer.

Low Precision Support Our implementation of Adasum
integrates with the low-precision support in Horovod. There
are two subtleties in our implementation. First, Adasum
computes the dot product and norms of the combined gradi-
ents using a double precision accumulator for numerical
stability. Second, we use dynamic scaling (Micikevicius
et al., 2017) to scale gradient calculations into the dynamic
range of the low-precision format.

CPU and GPU Vectorization Adasum runs on both CPU
and GPU hardware in fp16, fp32, and fp64. For CPU
hardware, we manually vectorize loop bodies that perform
both dot products and summations. When Horovod is com-
piled with CUDA aware MPI, we implement these same
loops as GPU kernel calls that operate directly on GPU
memory and thus save on the transfer from GPU to CPU.
This is particularly important on hardware that supports
GPUDirect RDMA as GPU memory need not be copied to
the CPU for the Adasum operator.

10
24

20
48

40
96

81
92
16

38
4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

tensor (bytes)

0.0

0.5

1.0

1.5

Sp
ee

du
p 

ov
er

 A
da

su
m

NCCL
Adasum

Figure 1. Latency of ADASUMRVHDD vs. NCCL for various
message sizes.

Without With

Microbatch size fitting on a GPU 22 36
#Samples/s without model update 618.8 674.0
Model update time (s) 1.82 0.97

Table 1. Performance improvement of Adasum parallelization with
4 GPUs.

5 RESULTS

This section validates the design and our implementation of
Adasum and evaluates it on a variety of real-world training
scenarios. Section 5.1 describes standalone experiments
that investigate the algorithmic and performance aspects of
Adasum. Section 5.2 then presents a sequence of case stud-
ies that demonstrate the convergence benefits of Adasum
and evaluate its sensitivity to hyperparameter tuning.

5.1 Standalone Experiments

5.1.1 ADASUMRVHDD Performance

We first measure the performance of the core Adasum com-
putation. Unlike standard allreduce that requires one pass
over the gradient buffers, Adasum requires two passes to
compute the dot product and norm of gradients before doing
the adaptive sum. Nevertheless, we show that Adasum can
be efficiently implemented. Figure 1 shows the latency of
ADASUMRVHDD when compared to NCCL allreduce eval-
uated on 16 Azure Standard_NC24rs_v3 nodes with
4 V100s per node (PCIe interconnect) connected by 100
Gb/s Infiniband connection. The x axis is the size of the in-
put tensor (measured in bytes), which is equally distributed
across 64 GPUs. The figure shows Adasum performance is
competitive with NCCL allreduce (for sizes up to 256 MB)
with overhead less than 45% but sometimes outperforming
by up to 15%. Note, Horovod fuses gradients from layers
in a buffer of size 64 MB before performing allreduce. As
communication is only a part of gradient computations dur-
ing training, this overhead is masked when comparing end
to end system efficiency. Section 5.2 delves deeper into
these aspects.



Scaling Distributed Training with Adaptive Summation

(a) ResNet-50

(b) BERT-Large

Figure 2. Orthogonality of gradients for ResNet-50 (a) and BERT-
Large (b). A value of 1 in the y-axis means the gradients are
orthogonal. The bold red lines show orthogonality averaged across
all layers. Other lines show the orthogonality of individual layers.

5.1.2 Parallelization Performance

Another crucial optimization is the parallelization of Ada-
sum operation described in Section 4. Table 1 above shows
the performance improvement given by this optimization
for a PyTorch implementation of BERT-Large on an Azure
Standard_NC24rs_v3 node (4 GPUs) evaluated during
the first phase of BERT-Large (128 max sequence length).
Since this optimization reduces the memory usage and im-
proves the model update time, we broke down the benefit of
it in two folds: number of samples processed without model
update and model update time by itself. First, we increased
the microbatch size that fits in a GPU by 60% as shown in
the first row using the extra memory. We disabled the model
update and measured the total number of examples that the
4 GPUs can compute a gradient for per second which is
shown in the second row. As it can be seen, this provides
10% improvement for pure gradient computation. Finally,
we disabled the gradient computation and only measured the
model update time in the last row of Table 1 which shows
that a nearly 1.87× improvement. The overall system ef-
ficiency benefits from both of these improvements and it
depends on the minibatch size used.

5.1.3 Per-Layer Orthogonality

The core intuition of Adasum is to adaptively combine the
gradients based on their orthogonality — when gradients

are orthogonal to each other, Adasum adds the gradients
and when gradients are parallel, Adasum averages the gra-
dients. (Yin et al., 2018) introduces gradient diversity and
shows that there is a direct correlation between it and the
largest minibatch size that can be used with SGD without
negatively affecting convergence. Gradient diversity is de-
fined by

∑n
i=1‖gi‖

2

‖∑n
i=1 gi‖2

. (Yin et al., 2018) claims that when the

gradient diversity is high (for example when all gradients
are orthogonal, diversity is 1), the convergence rate of SGD
with minibatch size n is on a par with a minibatch size of
1. On the other hand, when all gradients are the same, di-
versity is 1

n2 and convergence of SGD is poor. Instead of
gradient diversity, we introduce a similar fraction but for
gradients from gradients from each layer which computes
‖Adasum(g[1,n])‖2∑n

i=1‖gi‖
2 . This measure is in [0, 1] and the closer

it is to 1, the closer Adasum is to summing the gradients
instead of averaging. The two measurements represent the
same property at the two extreme cases.

Our hypothesis is that as the training proceeds, the gradi-
ents become orthogonal to each other, allowing Adasum
to aggressively sum the gradients instead of average, thus
enabling better convergence. To investigate this hypoth-
esis, we periodically measure our fraction for each layer
during training. Figure 2 plots this measure during the train-
ing of ResNet-50 (a) and BERT-Large (b) with 64 GPUs.
The bold red line shows the average of the measure for all
layers. Clearly, this lines show that gradients on average
tend to become orthogonal as the training proceeds both for
ResNet-50 and BERT-Large. Other colors plot the measure
for individual layers. With many layers, one cannot discern
the behavior of each layer individually. However, general
trends show that most layers become orthogonal as the train-
ing proceeds, but do so at different rates. This suggests the
effect of Adasum cannot be easily achieved with appropri-
ately designed learning rate schedulers. This discrepancy
is more visible for BERT-Large, where some layers have
low orthogonality throughout the training process. Note
there are clear drops in the orthogonality during the train-
ing for both benchmarks. These drops happens exactly at
boundaries of learning rate schedule change.

5.2 Convergence Results

This section demonstrates the improvement in convergence
results for BERT-Large and ResNet-50. First, we describe
the key convergence results:

Does Adasum enable faster convergence? For BERT-
Large, Adasum with LAMB converges in 20% fewer epochs
than with LAMB alone when using a batch size of 64K (see
Section 5.2.1). Likewise, for ResNet-50, which uses the
Momentum optimizer, Adasum converges with a 16K mini-
batch size without hyperparameter tuning while allreduce
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Number of steps
Algorithm Phase 1 Phase 2

Baseline-Adam - -
Baseline-LAMB (You et al., 2019) 7039 1563
Adasum-Adam 7039 1563
Adasum-LAMB - 20% 5639 1250
Adasum-LAMB - 30% 5039 1563
Adasum-LAMB - 128K 4574 1563

Table 2. Convergence results on BERT-Large. Table shows the
number of steps required for Phase 1 and Phase 2 to achieve target
SQuAD score of 90.5, when using the minibatch size of 64K for
Phase 1 (with the exception of last row) and 32K for Phase 2.

does not.

Does Adasum enable larger minibatch sizes than prior
art? For BERT-Large we show Adasum scales the Adam
optimizer to a 64K minibatch size while the inability of
Adam to scale beyond 16K was the primary motivation for
optimizers like LAMB (You et al., 2019). Likewise, we
show that Adasum converges with a 128K minibatch size
for LAMB (See Section 5.2.1).

How sensitive is the benefit from Adasum to hyperpa-
rameter tuning? For LeNet-5, we show that even with
extensive hyperparameter search over the learning rate, Ada-
sum still converges faster than allreduce (see Section 5.2.3).

5.2.1 BERT-Large

This section shows Adasum scales both Adam (Kingma
& Ba, 2014) and LAMB (You et al., 2019) for the
PyTorch NVIDIA implementation of BERT-Large (nvi).
For the Adasum implementation, we replaced its use of
torch.distributedwith the Adasum operator in Horovod.
We trained to a target F1 score of SQuAD 1.1 of 90.5 av-
eraged over 5 tries with different seeds (You et al., 2019;
Devlin et al., 2019).

The system is a cluster of DGX-2 nodes where each node
has 16 V100 GPUs with 32GB of memory per GPU con-
nected by NVSwitch. Each node has 8 NICs with Infiniband
support capable of delivering a throughput of 800GB/s per
node.

Convergence Table 2 describes the convergence of Ada-
sum over the Adam and LAMB optimizer when using a
minibatch size of 64K for Phase 1 and 32K for Phase 2. As
reported in prior work, the Adam optimizer does not scale
to a minibatch size beyond 16K(You et al., 2019). This mo-
tivated the study of more sophisticated optimizers such as
LARS and LAMB. For instance, our runs of the LAMB op-
timizer (without Adasum) achieve the target SQuAD score
with 7039 steps of phase 1 and 1563 steps of phase 2, as
shown in second row of Table 2.

PH1 speedup PH2 speedup Time (minutes)
GPUs Allreduce Adasum Allreduce Adasum Sum Adasum

64 1 0.98 1 0.99 997 809
256 3.79 3.61 3.89 3.92 260 214
512 7.47 6.48 7.24 7.28 135 118

Table 3. System efficiency on BERT-Large for an minibatch size of
64K and 32K for phase 1 and phase 2, respectively. The speedup
numbers are relative to the throughput of Baseline-LAMB with 64
GPUs, which is 12.2K examples per second for Phase 1 and 4.6K
examples per second for Phase 2. The improved convergence time
of Adasum is a result of the 20% improvement in convergence as
shown in Table 2.

The next two rows of Table 2 show the performance of Ada-
sum. In contrast to Adam baseline, the Adasum-Adam opti-
mizer converges with 64K when run with the same number
steps for Phase 1 and Phase 2 as the LAMB baseline. De-
spite the advances of optimizers such as LAMB, the Adam
optimizer continues to be popular for some models. When
compared to prior work (You et al., 2019), it is important to
note that Adasum adds no additional hyperparameters and
simply uses the baseline parameters of the Adam optimizer.
On the other hand, improvements provided by Adasum are
orthogonal to improvements in optimizers. As shown in
Table 2, Adasum-LAMB provides 20% faster convergence
compared to the LAMB baseline, requiring 5639 steps for
phase 1 and 1250 steps phase 2.

We also performed two variations of our Adasum-LAMB
results. First, we aggressively reduce the number of Phase
1 steps by 30%. With an equivalent aggressive reduction
on Phase 2, we slightly missed the target SQuAD score by
0.5. However, we did achieve the target accuracy with the
full 1563 steps in Phase 2, which is what we report in the
table. With a more fine grained search for Phase 2 steps, we
believe we can achieve the target SQuAD score with fewer
Phase 2 steps. This is a great result given Phase 1 takes a
larger percentage of training time than Phase 2.

For the second variation, we increased the minibatch size of
Phase 1 to 128K. We were able to achieve the target SQuAD
score with 4574 steps in Phase 1, while using the standard
1563 steps of Phase 2 with 32K minibatch size. Note that
this convergence of Phase 1 with 128K minibatch size re-
quires 128K × 4574 = 585, 472K samples (steps(b) · b
for convergence definition in Section 2), while the default
LAMB requires 64K × 7039 = 450, 496K samples. This
30% increase could be compensated for by the potential 2×
increase in the amount of parallelism available with a larger
number of GPUs. To the best of our knowledge, this is the
largest reported minibatch size for BERT-Large. In contrast,
despite our best efforts, LAMB alone with 128K minibatch
size requires around 7000 steps for Phase 1, which negates
any potential speedup from the 2× larger minibatch size.
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System Efficiency Table 3 shows the speedup of Adasum-
LAMB when compared to Baseline-LAMB for a minibatch
size of 64K. On our GPU cluster, the Baseline-LAMB pro-
cesses 12.2K examples per second during Phase 1 and 4.6K
examples per second during Phase 2. This reduction in
throughput arises because Phase 2 has more computation
due to increases sequence length. The speedup numbers in
the table are relative to this baseline. For instance, at 256
GPUs, the baseline scales to a speedup of 3.789 (a perfect
scaling would be 4). Just as a comparison with published
NVIDIA numbers (nvi), the baseline finishes BERT-Large
in 260 minutes which is slower than 236 minutes reported
by NVIDIA. This difference is due to the NVIDA cluster
having a slightly more performant DGX-2H configuration
using a higher clock speed compared to our DGX-2 cluster.

Though Adasum performs more computation during allre-
duce, the reduction in throughput for 64 GPUs is less than
2% for Phase 1 and less than 1% for Phase 2. As we increase
the number of GPUs, the additional computation results in
lower scaling efficiency for Phase 1. For instance, Adasum
incurs roughly a 5 % reduction (13% reduction) in through-
put when compared to the baseline for Phase 1 on 256 (512)
GPUs. On the other hand, the throughput for Phase 2 with
Adasum shows similar scalability as we increase the number
of GPUs, with Adasum being faster sometimes. This is due
to the fact that Phase 2 does more computation.

The slight reduction in system efficiency is more than com-
pensated by the 20 % reduction in convergence. As such,
Adasum achieves faster time to accuracy than the baseline.
In particular, Adasum completes BERT-Large in 214 min-
utes, which is faster than NVIDA reported numbers on 256
GPUs (nvi) and 20% faster than our own baseline run on
the same hardware. On 512 GPUs, Adasum reaches the
desired accuracy in 118 minutes. We observed some of the
overhead is due to CUDA aware MPI (OpenMpi + UCX)
was not as fast as NCCL. We are in the process of porting
Adasum’s allreduce to NCCL as a consequence.

5.2.2 ResNet-50

This section evaluates Adasum on PyTorch’s ResNet-50 (He
et al., 2016) on Imagenet (Russakovsky et al., 2015) using
the Momentum-SGD optimizer. We modified PyTorch’s
model to run with Horovod and compared the performance
of Adasum with Horovod’s Sum operator. We ran exper-
iments on Azure’s Standard_NC24rs_v3 virtual ma-
chines, each of which has 4 NVIDIA Tesla V100 GPUs
connected with PCIe with 16GiB of memory for each, dual-
socket Intel Xeon E5-2690 v4 CPUs, 448 GiB of memory,
and connected via Infiniband. We train on 64 V100s with 2K
and 16K examples per allreduce and use the default hyper-
parameters that ship with the benchmark for its momentum
based SGD optimizer.

Allreduce Adasum
2K 16K 2K 16K

Number of epochs 62 - 62 69
Time per epoch (min) 5.61 2.12 5.72 2.23

Table 4. Convergence and system efficiency for Resnet50.

 

        
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Time-to-accuracy chart for ResNet-50 with 64 GPUs on
16 Standard_NC24rs_v3 VMs.

Table 4 and Figure 3 show the results. For 2K batch size,
both allreduce and Adasum reach the target accuracy of
74.9% in 62 epochs. Adasum’s time per epoch is 2% slower
due to the overheads of the Adasum operation. On the
other hand, allreduce with 16K minibatch size never reaches
74.9% validation accuracy as it plateaus below (we let it
run for 120 epochs). Adasum converges in 69 epochs with
this larger minibatch size with the same hyperparameters as
the 2K minibatch size. Of course, it might be possible for
allreduce to converge with 16K minibatch size with better
hyperparameter tuning. One of the advantages of Adasum
is that this additional effort is not necessary. Section 5.2.3
investigates this further with an extensive hyperparameter
search. Note that increasing the minibatch size from 2K to
16K results in a 61% and 62% improvement in system effi-
ciency for Adasum and allreduce, respectively. Moreover,
Adasum 16K achieves the target accuracy of 74.9% and
is 2.3× faster in time to accuracy than Adasum 2K, while
using the same number of GPUs.

5.2.3 Extensive Hyperparamer Search

Now we study Adasum on LeNet-5, a relatively small
model for which we can do extensive hyperparameter search.
These experiments validate that the convergence benefit of
Adasum is not sensitive to hyperparameter tuning, i.e., even
with highly tuned hyperparameters Adasum improves con-
vergence with large minibatch sizes.

We used the PyTorch version of LeNet-5 found in Horovod’s
examples with a momentum based SGD optimizer with a
minibatch size of 32 and use 99.3% as our target accu-
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Figure 4. LeNet-5 accuracies under an aggressive learning rate
schedule for a small minibatch size scaled up to various large
minibatch sizes.

racy. We used an Azure cluster of NC-series VMs with
333 NVIDIA K80 GPUs for these experiments. While the
original example has a fixed learning rate schedule of 10
epochs, we were able to bring this down to 2 epochs using a
linear warmup and decay to zero. We found a configuration
of max learning rate of 0.00328 and a warmup of 17%.

In the following experiments, we scale up the minibatch
size with the number of GPUs (i.e., keep the microbatch
size constant). Since MNIST has 60000 images, one GPU
will take 1875 steps per epoch, while 32 GPUs would take
only 58 steps per epoch.

We evaluated Adasum and allreduce with minibatch sizes
of 128, 256, 512 and 1024 (4, 8, 16 and 32 GPUs respec-
tively) with both an unmodified learning rate as well as an
optimized one, which we searched for separately for each
combination of method and minibatch size. For allreduce
when we don’t tune the learning rate it is scaled up linearly.
Figure 4 shows the accuracies reached by each configuration
under the aggressive learning rate schedule we found for a
the small minibatch size of 32.

Without learning rate tuning allreduce fails to converge at
more than 256 minibatch size, while Adasum still converges
at 1024 without any hyperparameter search. This highlights
the easy scalability that Adasum enables. Furthermore,
even with a tuned learning rate allreduce is far below even
untuned Adasum at a minibatch size of 1024, and is still
beat by Adasum with a tuned learning rate at 512 minibatch
size.

Consider the tuned learning rates for each configuration:

Method 128 256 512 1024

Adasum 0.033 0.015 0.012 0.02
Allreduce 0.027 0.017 0.009 0.004

For allreduce going from 512 to 1024 minibatch size is
coupled with a halving of the learning rate, which means
that the per iteration step size stays the same even though
twice as many GPUs are participating in each iteration. In
contrast, Adasum can maintain much higher learning rates
at minibatch sizes of 512 and 1024.

6 RELATED WORK

Previous works for enabling large-batch training have fo-
cused on the problem of adapting the learning rate appro-
priately. Adam (Kingma & Ba, 2015) adjust the step size
based on the variance of gradients, taking smaller steps
when variance is high. LARS (You et al., 2017) adapts
learning rates per-layer using a trust ratio calculated as the
ratio between the norm of the layer weights and the norm of
gradients, the intuition being that divergence happens when
steps are large in relation to the parameters being updated.
LAMB (You et al., 2019) can be seen as LARS applied to
Adam instead of vanilla SGD. These approaches that use
statistical measures to adapt learning rate are qualitatively
different from Adasum, which exploits a specific property
(orthogonality) of gradients to take bigger steps when ap-
propriate. Adasum and learning rate adaption methods are
in many cases complementary, as we have shown in our
experiments successfully combining Adasum with Adam
and LAMB.

Asynchronous SGD (Dean et al., 2012; Chilimbi et al.,
2014) approaches can address two issues in distributed syn-
chronous SGD: synchronization overhead of faster nodes
having to wait for stragglers to finish the iteration, and non-
overlapping of compute and communication. However, stale
gradients present another potential source of degraded con-
vergence. Specifically, the DC-ASGD algorithm (Zheng
et al., 2016) addressed this staleness using an approximation
of the Hessian as used in Adasum. They only use the diag-
onal elements of the g · gT approximation of the Hessian
and require an additional hyperparameter which requires
a careful tuning over time. It was also only evaluated for
SGD and Momentum-SGD. Our approach was motivated
to be a drop-in replacement of the allreduce operation and
thus we eliminate all hyperparameters in our combination
and it is optimizer agnostic. Similarly, Maleki et al. (Maleki
et al., 2018) use the Hessian to reduce staleness and use a
Johnson-Lindenstrauss projection to get a low rank approx-
imation of a semantics-preserving model combiner. Their
approach only works with exact Hessian computation and
is unlikely to scale to DNNs.

While large-batch training methods decrease the amount of
communication needed, gradient compression approaches
reduce the cost of each communication round. In gradient
quantization approaches gradients are cast to a lower bit-
width datatype for communication, with bit-widths ranging
all the way down to 1 bit (Seide et al., 2014). Low-rank
compression methods communicate the most important di-
mensions of gradients (Vogels et al., 2019).
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A APPROXIMATING LARGE MINIBATCH
SGD WITH SMALL MINIBATCH SGD

Suppose L1(w) and L2(w) are two loss functions corre-
sponding to two different examples. Starting from model
w0, sequential SGD, calculates w1 = w0 − α∇L1(w0)
followed by w2 = w1 − α∇L2(w1) where α is a prop-
erly set learning rate for both iteration. With forward sub-
stitution, w2 = w0 − α(∇L1(w0) + ∇L2(w1)). Alter-
natively, ∇L1(w0) and ∇L2(w0) (note that gradients are
both at w0) are computed in parallel and w is updated with
w′2 = w0 − α(∇L1(w0) + ∇L2(w0)). Clearly w′2 and
w2 are different because ∇L2 was computed at a different
point.

A.1 Using Taylor Expansion

Adasum uses an estimate for ∇L2(w1) using the Taylor
expansion to capture the effect of the first update on the
second. Note that ∇L2(w1) is a convenient notation for
the first order derivative of L2 and can be re-written with
∂L2

∂w

∣∣∣
w1

. Therefore:

∇L2(w1) =
∂L2

∂w

∣∣∣
w1

=
∂L2

∂w

∣∣∣
w0+(w1−w0)

=
∂L2

∂w

∣∣∣
w0

+
∂2L2

(∂w)2

∣∣∣
w0

· (w1 − w0) +O(‖w1 − w0‖2)

=
∂L2

∂w

∣∣∣
w0

− α ∂
2L2

(∂w)2

∣∣∣
w0

· ∇L1(w0)

+ α2O(‖∇L1(w0)‖2)
≈ ∇L2(w0)− αH2(w0) · ∇L1(w0)

(10)

where the error in the approximation is α2O(‖∇L1(w0)‖2)
and H2(w0) is the Hessian matrix of loss function L2. The
quadratic relationship between the error in Formula 10 and
the learning rate α helps this approximation as in most train-
ing practices, learning rate decays as training progresses.
However, computing H2(w0) requires significant compu-
tational power as the size of this matrix is the number of
model parameters squared. With millions of parameters,
even storing the matrix is infeasible.

(Hastie et al., 2001) shows that for models with negative log
likelihood loss functions (which is the case for all models
studied in this paper), the Hessian matrix can be approxi-
mated by the outer product of the gradients. By using Equa-
tion 10 and this approximation,∇L2(w1) can be rewritten
by:

∇L2(w1) ≈ ∇L2(w0)−α∇L2(w0)·∇L2(w0)
T ·∇L1(w0)

(11)

A.2 Choosing optimal learning rate

For this discussion, we assumed that α was properly chosen
for the sequential SGD algorithm. We use Taylor expansion
for the loss function L2(w0−α∇L2(w0)) and we will take
its derivative with respect to α to find the optimal value:

L2(w0 − α∇L2(w0)) ≈ L2(w0)− α∇L2(w0)
T · L2(w0)

+
α2

2
∇L2(w0)

T ·H2(w0) · ∇L2(w0)

=⇒ ∂L2(w0 − α∇L2(w0))

∂α
= −∇L2(w0)

T · L2(w0)

+ α∇L2(w0)
T ·H2(w0) · ∇L2(w0) = 0

=⇒ α ‖∇L2(w0)‖4 = ‖∇L2(w0)‖2

=⇒ α =
1

‖∇L2(w0)‖2
(12)

where the last line is derived from the approximating for the
Hessian matrix. By putting together Equation 12 and 11,
∇L2(w1) can be approximated by:

∇L2(w1) ≈ ∇L2(w0)−
∇L2(w0) · ∇L2(w0)

T

‖∇L2(w0)‖2
∇L1(w0)

(13)

Therefore, to approximate the sequential SGD semantics in
a parallel setting, Adasum uses:

w2 = w0 − α(∇L1(w0) +∇L2(w1)) ≈ w0

− α(∇L1(w0) +∇L2(w0)

− ∇L2(w0) · ∇L2(w0)
T

‖∇L2(w0)‖2
∇L1(w0))

= w0 − α(g1 + g2 −
g2 · gT2
‖g2‖2

g1)

(14)

where in the last equality,∇L1(w0) was replaced by g1 and
∇L2(w0) by g2 for simplicity (note that the gradients in the
last equality are all from w0).

The Adasum operation is the symmetric version of the model
update in Equation 14 that samples both paths as described
in Section 3.3.

A.3 Convergence Proof for Adasum

(Polyak & Tsypkin, 1973) discusses the requirements for a
training algorithm to converge to its optimal answer. Here
we will present a simplified version of Theorem 1 and Corol-
lary 1 from (Polyak & Tsypkin, 1973).

Suppose that there areN training examples for a model with
loss functions L1(w), . . . , LN (w) where w is the model
parameter and w0 is the initial model. Define L(w) =
1
N

∑
i Li(w). Also assume that w∗ is the optimal model
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where L(w∗) ≤ L(w) for all ws. A training algorithm is
pseudogradient if:

• It is an iterative algorithm where wi+1 = wi − αihi
where hi is a random vector and αi is a scalar.

• ∀ε∃δ : E(hi)T · ∇L(w) ≥ δ > 0 where L(w) ≥
L(w∗) + ε and w∗ is the optimal model.

• E(‖hi‖2) < C where C is a constant.

• ∀i : αi ≥ 0,
∑
i αi = inf , and

∑
i α

2
i < inf .

The following Theorem is taken from (Polyak & Tsypkin,
1973).

Theorem A.1. A pseudogradient training algorithm con-
verges to the optimal model w∗.

In this section, we assume that the true gradient, ∇L
is bounded at any point. As a reminder, AS(g1, g2) =

(1− g1·gT1
2·‖g1‖2

) · g2 + (1− g2·gT2
2·‖g2‖2

) · g1. As discussed in Sec-
tion 3.4 Adasum operator reduces N gradients in a binary
tree manner. We will prove that the final gradient has all
necessary requirements of pseudogradient. First, we discuss
the inner product of Adasum final vector with∇L(w):

Lemma A.2. Suppose X = {x1, . . . , xN} is a random
variable distribution. For all a and b independently chosen
from X , let’s define Y = AS(a, b). Assume that θ is the
angle between E(X) and E(Y ). cos θ > 0.942.

Proof.

E(Y ) = E
(
AS(a, b)

)
= E

(
(1− a · aT

2 · ‖a‖2
) · b

+ (1− b · bT

2 · ‖b‖2
) · a

)
= E(a) + E(b)

− E
( a · aT

2 · ‖a‖2
)
· E(b)− E

( b · bT

2 · ‖b‖2
)
· E(a) = 2E(X)

− E
(a · aT
· ‖a‖2

)
· E(X)

(15)

where the last equation comes from the independence of
a and b. Next we will calculate, η, the angle between
2E(X) − a·aT

·‖a‖2 · E(X) for some arbitrary a. First let’s
denote E(X) with r and assume the angle between r and a

is γ. By using the property of inner product, we have:

cos η =
rT · (2r − a·aT

·‖a‖2 · r)

‖r‖ ·
∥∥∥2r − a·aT

·‖a‖2 · r
∥∥∥

=
2 ‖r‖2 − ‖r‖2 (cos γ)2

‖r‖ ·
√
4 ‖r‖2 + ‖r‖2 (cos γ)2 − 4 ‖r‖2 (cos γ)2

=
2− (cos γ)2√
4− 3(cos γ)2

(16)

By taking a derivative of γ from the last equation, we find
the minimum value of cos η to be ≈ 0.9428 which con-
cludes that eta is at most 0.108π. Since in Formula 15,
E(Y ) is calculated over an average of all possible a vectors,
we can still guarantee that E(Y ) and E(X) have at most an
angle of 0.108π since we derived this value for the worst
case scenario.

Lemma A.3. With same assumptions as in Lemma A.2,
‖E(X)‖ ≤ ‖E(Y )‖ and E(‖Y ‖) ≤ 2E(‖X‖).

Proof. As discussed in Lemma A.2, E(Y ) = 2E(X) −
E( a·a

T

·‖a‖2 ) · E(X) = (2I − E( a·a
T

·‖a‖2 ) · E(X). It is triv-

ial to check that the matrix (2I − E( a·a
T

·‖a‖2 ) is symmetric
with eigenvalues between 1 and 2. Therefore, ‖E(X)‖ ≤
‖E(Y )‖.

Now suppose that a and b are uniformly randomly chosen
from Y .

E(‖AS(a, b)‖2) ≤ E

(∥∥∥∥∥(1− a · aT

2 · ‖a‖2
) · b

∥∥∥∥∥
2

+

∥∥∥∥∥(1− b · bT

2 · ‖b‖2
) · a

∥∥∥∥∥
2)
≤ E

(
2 ‖b‖2 + 2 ‖a‖2

)
≤ 4E(‖X‖2) =⇒ E(‖Y ‖) ≤ 2E(‖X‖)

(17)

Assumption: Lemma A.2 showed that in the worst case
E(Y ) can rotate at most 0.108π with respect to E(X).
Even meeting this worst case requires carefully crafted
xis. If Adasum was applied recursively on X (Y =
AS(X,X), Z = AS(Y, Y ), . . . ) for k times, the expected
value of final distribution will at most have an angle of
0.108kπ which is only possible if each Adasum meets the
worst case scenario and each worst case is stacked over the
previous one. As one can imagine, this is an extremely
unlikely scenario. In case xis are gradients, we assume that
Adasum recursively always keeps the angle with E(X) to
at most σ where cosσ > 0. Using this assumption and
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Lemma A.3, we can prove that Adasum algorithm is a pseu-
dogradient training algorithm.

Theorem A.4. Adasum algorithm applied in an iterative
manner using a proper learning rate on a set ofN gradients,
G = {g1, . . . , gN} computed in parallel, is a pseudogradi-
ent training algorithm.

Proof. Given that Adasum follows the iterative method of
SGD, the first assumption of a pseudogradient training
algorithm is met. Also, since we use the learning rate
schedule from the converging sequential SGD, the require-
ment for the learning rate is trivially met. Section 3.4
discussed how Adasum reduces all gradients in a binary
tree manner which has logN steps assuming that N is a
power of 2. The distribution of the leaf level in this bi-
nary tree is G and the next level’s distribution is G1 =
AS(G,G). Level i’s distribution is Gi+1 = AS(Gi, Gi).
At the top of the tree, we have GlogN as the distribu-
tion. Using Lemma A.3, E(‖GlogN‖) ≤ 2logN E(‖G‖) =
N E(‖G‖). Since E(‖G‖) is bounded based on the assump-
tion of vanilla SGD, E(‖GlogN‖) is bounded as well. This
meets the requirement for the norm of the his. Finally,
Lemma A.3 proves that E(G) ≤ ‖E(GlogN )‖ and there-
fore E(GlogN )T Ė(G) ≥ ‖E(GlogN )‖ ‖E(G)‖ cosσ ≥
‖E(G)‖2 cosσ. For any wi which is not w∗, ‖E(G)‖ > 0
and based on the assumption, cosσ > 0. Therefore, the pos-
itive inner product assumption is also met which concludes
that Adasum is a pseudogradient training algorithm and it
converges.

A.4 Adasum Convergence Rate

Convergence rate of Adasum is highly dependent on orthog-
onality of the gradients. In the worst case scenario if all
gradients are parallel, the algorithm converges in 1/N rate
of the sequential SGD where N is the number of processors
and in the best case where all of the gradients are orthogonal,
we expect Adasum to converge as fast the sequential SGD.

A.5 Convergence of Adasum with per Layer
Application

Let’s define Gl to be the gradient distribution of layer
l. Similar argument from Theorem A.4 can be ap-
plied to prove that E(GllogN )T · E(Gl) > 0 where
GllogN is the distribution of GlogN projected on only
layer l. It is straightforward to follow that E(GlogN )T ·
∇E(G) > 0 as E(GlogN )T · ∇E(G) =

∑
l E(GllogN )T ·

∇E(Gl) > 0. This satisfies the second requirement of
Theorem A.1 when Adasum is applied per layer. The
third property can be similarly satisfied as E(‖GlogN‖2) =∑
l E
(∥∥∥GllogN∥∥∥2 ) ≤ ∑lN E(

∥∥Gl∥∥2) = N E
(
‖G‖2

)
and E

(
‖G‖2

)
is bounded based on the assumption of

vanilla SGD. The other two requirements of Theorem A.1
are satisfied similar to Theorem A.4.

A.6 Convergence of Adasum with Other Optimizers
than SGD

Recent works (Kingma & Ba, 2015; You et al., 2019; 2017)
have introduced other optimizing methods such as Adam,
LAMB or LARS that significantly improves the conver-
gence. In all of these optimizations, for a computed gradient
g, f(g) is calculated which returns a vector with the same
shape as g and each element of f(g)[i] = ci · g[i] where
ci is a positive and bounded scalar. These optimizers dif-
fer by having different learning rate mechanisms for each
parameter. For each of these optimizers, f(g) is only a
slightly biased estimation of the gradient. Therefore, we can
assume that in expectation, E(f(Gl)) ≈ cl ·E(Gl) for each
layer l where cl is a positive bounded scalar. If Adasum
is applied to f(gl1), . . . , f(g

l
N ) for each layer, similar posi-

tive inner product argument in Theorem A.4 can be applied
and conclude that the inner product of the final vector is
only multiplied by cl which is positive and bounded. Simi-
larly, because f(g) only multiplies the elements of g by a
bounded value, E(

∥∥f(Gl)∥∥2) as well as expectation of the
norm of the final generated vector by Adasum are bounded.
Therefore, Adasum converges for other optimizers where in
expectation, f(G) is a slightly biased G.


